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Instability of a contact surface driven by a nonuniform shock wave
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Stability of a uniform contact surface is investigated in the case when a nonuniform shock wave passes
through the surface. The nonuniform shock is generated by a rippled piston that moves with constant velocity.
The amplitude of the shock oscillates and decreases as it propagates. A uniform contact surface is found to be
unstable after the nonuniform shock passes across it. The growth rate depends sensitively on the phase of the
oscillating shock wave at the time when the shock hits the contact surface. The physical mechanism of the
instability is qualitatively discussed. The linear and nonlinear evolutions of the instability are studied. In
particular, the dependence of the linear case on the Atwood number for a weak shock is investigated. Properties
of this stability are found to exhibit differences from those of the standard Richtmyer-Meshkov instability in
both the linear and nonlinear casfS1063-651X96)50406-X]

PACS numbeps): 52.35—¢g

In inertial confinement fusion, fuel is required to be com-The pressure perturbation in the compressed region perturbs
pressed approximately up to 1000 times solid density. Arthe shock speed which is equal to the time derivative of the
asymmetric implosion associated with hydrodynamic instashock surface ripple. From the shock Hugoniot condition, the
bilities disturbs uniform high density compression and re-amplitude of the shock surface ripglE], ag(t), is thus given
duces fusion reaction yield. Nonuniform laser irradiationby
leads to nonuniform ablation and thus to the generation of y+1
nonuniform shock waves. This could seed density perturba- ag(t)= Wp%(ust,t), 2
tions that will grow later due to the Rayleigh-TayldRT) PoCo
instability in the acceleration phase. This happens even if the ) , ) )
target sa/rface is initially unifoprm. PP whereM is the shock Mach number angis the isentropic

It is well known that a nonuniform contact surface be- &XPonent. _ _
comes unstable when(aniform) shock wave passes through . 1° Solve Eq.(1) we make a linear perturbation of the

the contact surface because of the so-called Richtmyer‘jugom‘)t relationship at the shock front and use the fact that
Meshkov(RM) instability [1,2]. In this paper we investigate no perturbation exists ahead of the front and that the tangen-

the stability of a uniform contact surface when the nonuni-tial velocity is continuous at both sides of the shock. Thus,

form shock passes through it. It will be shown that the uni-We obtain, following Ref[1],

form contact surface becomes unstable and the growth rate 1 M M?2+1
d_epends on the phase. of the osciII_atir)g shock wave at the 0_8 2yM?—(y—1) + 2M{(y—1)M2+2}
time when the shock hits the material interface. Both linear
and nonlinear evolutions of the instability are found to have

dpi(vgt,t)
dt

2 1
differences from the RM instability. + M1 Pz ) 3
We consider a shock wave driven by a rippled piston as 2yM?=(y=1)| 9z | _ .
shown in Fig. 1a). In the figure, the piston is located at 0 °
in a reference frame moving with the piston, and the shock 2(M2-1)
propagates in thedirection with the speed af, relatively to +2k?p3cd Was(t) =0.

the piston. We consider the surface modulation of the piston
to be given agyexpikx), wherea, andk are the amplitude At the piston, we havep}(0,t)/9z=0. The initial conditions
and the wave number, respectively. The surface modulatioare given bya,(0)=a, and pi(o,o)zo_

of the piston induces perturbations of velocitydensityp, We can solve Eq(1) in the domaint=0, O<z=<ut. Fig-
and pressure in the shock compressed region. ure 2 shows the amplitude of the rippled shock surface,
In the linear theory 1], the pressure perturbation in the g (t), as a function of the normalized time,t/\, where is
shock compressed region satisfies the wave equation: the wavelength of the perturbatida=27/k). The param-
2pl(z.t) 2pl(zt) eters used ar@,=1 Mbar, po=0.01 g/cni, M=2, ay/\
L T %k2pl(z 1) (1)  =0.01, and\=100 um. Open circles show simulation re-
ot? o2 ! nenn sults obtained by using the two-dimensional fluid code

IMPACT-2D [3], in which fully Eulerian and Cartesian coordi-
wherec, is the sound speed in the shock compressed regiomate systems are employed, and the basic conservation equa-
The subscripts 0, 1, and 2 denote, respectively, the valug®ns for mass, momentum, and total energy density are nu-
ahead of the shock, behind the shock, and beyond the contatterically solved with an explicit total variation diminishing
surface as shown in Fig.(d). The superscripts 0 and 1 de- schemg4]. Solid line is the theoretical value obtained from
note the unperturbed and first-order quantities, respectivelfEgs. (1)—(3). They are seen in good agreement. It is clearly

1063-651X/96/58)/55924)/$10.00 53 R5592 © 1996 The American Physical Society



53 INSTABILITY OF A CONTACT SURFACE DRIVEN BYA. .. R5593
X (@ (b) (a) 0.004 — .
r A A
P fe———>{ e——>
0.002
p1’ Py ux1’ un E 0
I N N 'mo
B~ "~ iZa RR 1]
s |~ -0.002
Py P U, L%
1 C izac
C ,‘ -0.004
6
P Py U, TS M~~~
0 (b) o0.004
FIG. 1. lllustration of a nonuniform shock driven by a rippled 0.002

piston at a few time step®) prior to and(b) after the shock passes

a uniform contact surface in a reference frame moving with the
piston.P andC denote the piston and contact surface. IS and TS are
the incident and transmitted shock waves, and RR the reflected

a(t)/v

rarefaction wave for the case qfy>p,. po=0.01 g/cm, p; -0.002
=16py/7, andp,= py/3.

-0.004
seen that the rippled shock front oscillates and decays as it 6
propagates[5]. The oscillating amplitude of the rippled
shock surface decays asymptoticallytad for weak shocks (c) 0.004
(t~ Y2 for strong shocksas it propagates out from the piston
[6]. The decay was also observed in experimdik It
should also be noted that when the perturbation amplitude of 0-002 |
the rippled shock is zerfor example, the phases 1 and 3 in >”
Fig. 2), the perturbations of the longitudinal velocityil, é 0
pressurep}, and densityp}, have their maximum values at -w’
the shock frontiz=vt). On the other hand, when the per- .0.002 |
turbation amplitude is maximurior example, the phase 2 in
Fig. 2), the transverse velocity perturbatiou,l(l, has its 0.004 . ' . . .

maximum value and the other perturbations become zero. 6 7 s 9 10 11 12
Next, we consider that the nonuniform shock wave propa-
gates through a uniform contact surface. We show the

rippled piston, rippled shock and contact surface at a few FIG. 3. Normalized growth ratéveloc't.y perturbatioh of the
upstable contact surfaceg(t)/vs, as functions of the normalized

tlmfe steps Ir:)_rlor to anddaft(la)r shock p?SSFS tlhetrlelform (f[?]n:[[aﬁme, vt/N. Open circles(dashed ling are simulation results and
surface in Figs. () and 1b), respectively. In the case tha the solid line is the time averaged valga.(t)/v. (a), (b), and(c)

correspond to the cases where the rippled shock hits the uniform
contact surface at phases 1, 2, and 3 in Fig. 2, respectively.

Normalized time vt/ A

0.01 T T T T T T

the shock propagates through the contact surface from the
high density fluid(py) to the low density fluidp,), the re-

< flected rarefactioRR) and transmitted shocKl'S) propa-

= o gate in the compression regidp,;) and the low density re-

e gion (p,), respectively, after the shock hits the contact

Phase 3

o00s | Phasel  ]Phase2 surface. We first discuss the linear growth of the contact
surface. The growth rates of the contact surface perturbation

induced by the propagation of the nonuniform shock wave

0.01 ¢ » > 3 p s 6 7 are examined for three different cases. Namely, the shock

hits the contact surface at the three different oscillating
phases of the shock corresponding to the phases 1, 2, and 3
FIG. 2. Normalized amplitude of the rippled shock surface,around the normalized timegt/A=6~7 in Fig. 2. The nor-
ag(t)/\, as a function of the normalized time,t/x. Solid line is ~ Malized velocity perturbations of the contact surface,
the theoretical value obtained from E€f). Open circles show ac(t)/vs, are shown as open circles in Figga 3(b), and
simulation results. Phases 1 and 3 correspond to the time when ti#C) corresponding to the phases 1, 2, and 3 in Fig. 2, respec-
amplitude of the rippled shock surface becomes zero and phaset®ely, where a.(t) is the perturbation amplitude of the
the time when the amplitude has a maximum value. contact surface. The Atwood number of the contact surface,

Normalized time v t /A
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obtain the velocity perturbation of the contact surface in-
duced by the impact of the rippled shock front from the
first-order terms, in the form

. _ U.—Ug.
ac(ty) = Has(to)- 5

The pressure perturbation behind the rippled shock is a
damped oscillation. For simplicity we assume that the con-
tact surface is accelerated continuously, in the fogtt)
=Ag exp—T'(t—tg))sifw(t—tg)+ ¢}, where ¢ is the phase
of the oscillating shock at the tintg, andAg is a constant
value. w and " are the oscillating frequency and damping
rate of the acceleration, and they are assumed to be con-
stants. The growth rate of the instability is estimated by in-
tegrating the acceleratiorélc(t)=éc(to)—fﬁog(t)dt.

Now we maket—oo and assume>1T", thus getting

FIG. 4. Schematic drawing of an oblique shock perturbation
through a contact surface for a negative Atwood numAet). IS, . . Ag
TS, RR, andC are the same as in Fig. 1.'18ndC’ are the incident ((ac)) =ac(to) — 7009‘75' (6)

shock and contact surface after a tiche . .
where (( )) expressed an asymptotic valuega >

—(p,— i _ =lim_.(ac(t))=lim_ .a(t).
A= (po—po)(p2+py), is equal to—0.5 and therefore a t—e\de t—wtc
rarefaction is reflected. For all these cases the velocity Eduation(6)clearly indicates that the growth rate depends
perturbations of the contact surface oscillate with the sam@n the phase of the oscillating shock at the time when the
period and phase as the velocity perturbation behind thahock hits the contact surface. It can also be shown that the
shock. However, their time averaged valugg(t))/vs, are growth rate depends on the phase in the case that the accel-

different for the three cases. We definda,(t))  ©ration decays proportionally to" (n<0).
= L a (t')dt'/(t—ty), wheret, is the time when the shock We show the explicit dependence @&,)) on the phase
0

hits _the contact surface. They are _indicated. by the solid Iinem;t)a ® [31;3}/ &;i:j]ewrl]%?gzdilg atlheg rgzgioaerct)?rtbhaetlocrgnl_s
in Fig. 3. The averaged perturbation velocity of the contac c 1

surface(a(t)), is negative for the phase {a.(t))~0 for tact surface. From Eq2) we see thatp;(vst,t) has the
the phase 2, anda.(t)) is positive for the phase 3. The S@me phase aa(t). Then from Eq.(3) we deduce that
perturbation velocity of the contact surface is in phase witf(to) has the same phase ag(to). Namely, we obtain
the shock ripple perturbation velocity at the moment thefc(to) *as(to) cosp. Thus the first and the second terms in
shock crosses the contact surface. The growth rates of tHed- (6) have the same phase. If in H§) we assume that the
instability driven by the nonuniform shock thus depend onsecond term is proportional to the first one, then it results
the phase of the oscillating shock at the time when the shocibat
hits the contact surface. The dependence of the growth rates . .
on the shock phase is found to be similar even for different {(ac))=Db as(to), )

Atwood numbers as will be shown later whereD is a constant value. The validity of E€7) will be
The physical mechanism of the instability and the stronc%ggown later for various Atwood numbers. Equati@ indi-

dependence of the growth rate on the phase of the oscillatin
shock can be understood as follows. When the rippled shoc tes c_IearIy that the gro_vvth rate depends on the phase of the
hits the uniform contact surface. the shock induces the ve2Scillating shock at the time when the shock hits the contact

locity perturbation of the contact surface, impulsively. Thesurface. The instability can thus be understood as a gravita-

: : : Honal instability where the acceleration is induced by the
velocity perturbation of the contact surface can be eStIrnatevelocit erturbation of the shock front and by the oscillator
by considering that an oblique shock hits the contact surface yp y y

As shown in Fig. 4, in a time oft, the incident shock daq']ﬁs?jgri?lsduerr?cze;utrr?:“or(r;vaihggeIt(.)n the Atwood num-
moves a distance dfvs—ug+ a,(t)e*JAt in the z direc- b 9

tion, in the laboratory frame, while the intersection of theber is investigated for three different phases of the shock.

incident shock and the contact surface moves a distance c-l)?'e results are shown in Fig. 5, where open circles, squares,

= - ikx and triangles correspond to the phases 1, 2, and 3 in Fig. 2,
[rvhser:f%Jrreasgt:m): cc])ﬁtZ::ztirgljrfeil:gn?not\?:s gor(;%:ft sun;ace. respectively. The solid, dotted, and dot-dashed lines express
re, anee- ug ) .
+ay(t) "] At sina, /tane, normal to itself. Since the con- the theoretical values obtained from K@) for the phases 1,

S0 : g - 2, and 3, respectively, whem(t,) is estimated by substi-
_ ikx 0
;?;:rtnzu:lfvaec?]a\\//eelocny is1c—Up+ac(t)e™ in the laboratory tuting the pressure perturbation observed in the simulations,

p}(vsto,to), into Eq.(2) for each phase of Fig. 2, and assum-

Ucs—Ug
Us—Ug

) o ) o sina, ing D=0.66. The growth rates observed in the simulations
Uc—Uptac()e™=[vs—Uotast)e™] — = (4 agree very well with the theoretical values estimated from
S
Eq. (7).
For small angles, siw~tana~«a, and we obtaine..as= U, Nonlinear evolution of the instability is also investigated

—Ugivs— Ug from the zeroth-order terms of E@). We then  for the large amplitude of the rippled pistoag /A =0.2 by
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FIG. 5. Normalized asymptotic values of the growth rate, Normalized time vsi/A
((ac))!vs, vs Atwood number. Open circles, squares, and trianglesi,) phase 3
are simulation results for the cases corresponding to phases 1, 2, X ' Density e
and 3 in Fig. 2. The solid, dotted, and dot-dashed lines are th% 001 00z 063 (g/em?)
corresponding theoretical values. T T
ponding z p.V W N Al 4
1577 Y

using IMPACT-2D. The contrast in Fig. 6 indicates the iso-

density contour for the Atwood numbeA=-0.5. The

phases of the oscillating shock in Figgaand Gb) corre-

spond to the phases 2 and 3 in Fig. 2, respectively. The black

area in the top of each frame in the figures represents the

rippled piston, whose surface shape is given by a sinusoid

function. The first frame shows the rippled shock driven by

the piston and the uniform contact surface. The second frame Normalized time vst/ 7

shows the state at the time when the shock hits the contact i 6. Nonlinear evolutions of the instability are shown by the

surface,vt/A=0.7 in Fig. §a) and atvt/A=0.9 in Fig.  isodensity contours with contragt) and(b) correspond to phases 2

6(b). The third and fourth frames show the transmitted ShOClﬁnd 3 in Fig. 2. The black area in the top of each frame in the

and the unstable contact surface. figures represents the rippled piston.(# each frame corresponds
There is no asymptotic growth of the contact surface into the time awt/A=0.2, 0.7, 1.2, and 1.7, and iib) vt/x=0.4,

the linear regime of phase 2. However, the mushroom shap&g, 1.4, and 1.9P, C, IS, and TS are the same as in Fig. 1.

of the contact surface appears as shown in Hg). 6n the

case of phase 3, the square shape of the contact surface ap-

pears as shown in Fig.(§). These differences between the

linear and nonlinear cases are caused by the large distortiqg

of the shock surface which is not sinusoidal any more as on

can see in the first frame in Figs(6 and @b). At phase 2 linear evolutions of the instability exhibit differences from

;he CU?E)I!]Ike strtuctureds ;F’tﬁe?;'” tr_}i sha;l)e F;f t.he STOCLf SUhe standard RM instability. The physical mechanism of the
tﬁce a I'ek cert1 ertan d Oh sll es. evde ocl ytlr:npu sehronihstability can be explained as a gravitational instability
€ cusplike structured shock passage drives the mushroog, o, by the acceleration induced by the initial nonuniform

shapes 9f the contact surface. Even at phase.3, the shog ock and the pressure perturbation behind it. The growth
surface is not flat any more for the large amplitude of the

rippled shock. The shock surface with little square shapes rate depends on the phase of the oscillating shock at the time

g . . hen the shock hits the contact surface.
the contact surface in Fig.(§. The density perturbations
between the piston and contact surface in the last frames are We thank Dr. J. G. Wouchuk, Dr. M. Murakami, Profes-
rather complex because of the reflected rarefaction at theor H. Azechi, Mr. K. Shigemori, and Professor K. Mima for
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We have found an instability of the uniform contact sur-
ce when the nonuniform shock driven by a rippled piston
Sasses through the contact surface. Both the linear and non-

piston surface. many useful discussions.
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