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Stability of a uniform contact surface is investigated in the case when a nonuniform shock wave passes
through the surface. The nonuniform shock is generated by a rippled piston that moves with constant velocity.
The amplitude of the shock oscillates and decreases as it propagates. A uniform contact surface is found to be
unstable after the nonuniform shock passes across it. The growth rate depends sensitively on the phase of the
oscillating shock wave at the time when the shock hits the contact surface. The physical mechanism of the
instability is qualitatively discussed. The linear and nonlinear evolutions of the instability are studied. In
particular, the dependence of the linear case on the Atwood number for a weak shock is investigated. Properties
of this stability are found to exhibit differences from those of the standard Richtmyer-Meshkov instability in
both the linear and nonlinear cases.@S1063-651X~96!50406-X#

PACS number~s!: 52.35.2g

In inertial confinement fusion, fuel is required to be com-
pressed approximately up to 1000 times solid density. An
asymmetric implosion associated with hydrodynamic insta-
bilities disturbs uniform high density compression and re-
duces fusion reaction yield. Nonuniform laser irradiation
leads to nonuniform ablation and thus to the generation of
nonuniform shock waves. This could seed density perturba-
tions that will grow later due to the Rayleigh-Taylor~RT!
instability in the acceleration phase. This happens even if the
target surface is initially uniform.

It is well known that a nonuniform contact surface be-
comes unstable when a~uniform! shock wave passes through
the contact surface because of the so-called Richtmyer-
Meshkov~RM! instability @1,2#. In this paper we investigate
the stability of a uniform contact surface when the nonuni-
form shock passes through it. It will be shown that the uni-
form contact surface becomes unstable and the growth rate
depends on the phase of the oscillating shock wave at the
time when the shock hits the material interface. Both linear
and nonlinear evolutions of the instability are found to have
differences from the RM instability.

We consider a shock wave driven by a rippled piston as
shown in Fig. 1~a!. In the figure, the piston is located atz50
in a reference frame moving with the piston, and the shock
propagates in thezdirection with the speed ofvs relatively to
the piston. We consider the surface modulation of the piston
to be given asa0exp~ikx!, wherea0 andk are the amplitude
and the wave number, respectively. The surface modulation
of the piston induces perturbations of velocityu, densityr,
and pressurep in the shock compressed region.

In the linear theory@1#, the pressure perturbation in the
shock compressed region satisfies the wave equation:
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wherec1 is the sound speed in the shock compressed region.
The subscripts 0, 1, and 2 denote, respectively, the values
ahead of the shock, behind the shock, and beyond the contact
surface as shown in Fig. 1~a!. The superscripts 0 and 1 de-
note the unperturbed and first-order quantities, respectively.

The pressure perturbation in the compressed region perturbs
the shock speed which is equal to the time derivative of the
shock surface ripple. From the shock Hugoniot condition, the
amplitude of the shock surface ripple@1#, as(t), is thus given
by
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whereM is the shock Mach number andg is the isentropic
exponent.

To solve Eq.~1! we make a linear perturbation of the
Hugoniot relationship at the shock front and use the fact that
no perturbation exists ahead of the front and that the tangen-
tial velocity is continuous at both sides of the shock. Thus,
we obtain, following Ref.@1#,
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At the piston, we have]p1
1(0,t)/]z50. The initial conditions

are given byas(0)5a0 andp1
1(0,0)50.

We can solve Eq.~1! in the domaint>0, 0<z<vst. Fig-
ure 2 shows the amplitude of the rippled shock surface,
as(t), as a function of the normalized time,vst/l, wherel is
the wavelength of the perturbation~l52p/k!. The param-
eters used arep051 Mbar, r050.01 g/cm3, M52, a0 /l
50.01, andl5100 mm. Open circles show simulation re-
sults obtained by using the two-dimensional fluid code
IMPACT-2D @3#, in which fully Eulerian and Cartesian coordi-
nate systems are employed, and the basic conservation equa-
tions for mass, momentum, and total energy density are nu-
merically solved with an explicit total variation diminishing
scheme@4#. Solid line is the theoretical value obtained from
Eqs.~1!–~3!. They are seen in good agreement. It is clearly
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seen that the rippled shock front oscillates and decays as it
propagates@5#. The oscillating amplitude of the rippled
shock surface decays asymptotically ast23/2 for weak shocks
~t21/2 for strong shocks! as it propagates out from the piston
@6#. The decay was also observed in experiments@7#. It
should also be noted that when the perturbation amplitude of
the rippled shock is zero~for example, the phases 1 and 3 in
Fig. 2!, the perturbations of the longitudinal velocity,uz1

1 ,
pressure,p1

1, and density,r1
1, have their maximum values at

the shock front~z5vst!. On the other hand, when the per-
turbation amplitude is maximum~for example, the phase 2 in
Fig. 2!, the transverse velocity perturbation,ux1

1 , has its
maximum value and the other perturbations become zero.

Next, we consider that the nonuniform shock wave propa-
gates through a uniform contact surface. We show the
rippled piston, rippled shock and contact surface at a few
time steps prior to and after shock passes the uniform contact
surface in Figs. 1~a! and 1~b!, respectively. In the case that

the shock propagates through the contact surface from the
high density fluid~r0! to the low density fluid~r2!, the re-
flected rarefaction~RR! and transmitted shock~TS! propa-
gate in the compression region~r1! and the low density re-
gion ~r2!, respectively, after the shock hits the contact
surface. We first discuss the linear growth of the contact
surface. The growth rates of the contact surface perturbation
induced by the propagation of the nonuniform shock wave
are examined for three different cases. Namely, the shock
hits the contact surface at the three different oscillating
phases of the shock corresponding to the phases 1, 2, and 3
around the normalized timevst/l56;7 in Fig. 2. The nor-
malized velocity perturbations of the contact surface,
ȧc(t)/vs , are shown as open circles in Figs. 3~a!, 3~b!, and
3~c! corresponding to the phases 1, 2, and 3 in Fig. 2, respec-
tively, where ac(t) is the perturbation amplitude of the
contact surface. The Atwood number of the contact surface,

FIG. 1. Illustration of a nonuniform shock driven by a rippled
piston at a few time steps~a! prior to and~b! after the shock passes
a uniform contact surface in a reference frame moving with the
piston.P andC denote the piston and contact surface. IS and TS are
the incident and transmitted shock waves, and RR the reflected
rarefaction wave for the case ofr0.r2. r050.01 g/cm3, r1

516r0/7, andr25r0/3.

FIG. 2. Normalized amplitude of the rippled shock surface,
as(t)/l, as a function of the normalized time,vst/l. Solid line is
the theoretical value obtained from Eq.~1!. Open circles show
simulation results. Phases 1 and 3 correspond to the time when the
amplitude of the rippled shock surface becomes zero and phase 2
the time when the amplitude has a maximum value.

FIG. 3. Normalized growth rate~velocity perturbation! of the
unstable contact surface,ȧc(t)/vs , as functions of the normalized
time, vst/l. Open circles~dashed line! are simulation results and
the solid line is the time averaged value,^ȧc(t)/vs . ~a!, ~b!, and~c!
correspond to the cases where the rippled shock hits the uniform
contact surface at phases 1, 2, and 3 in Fig. 2, respectively.
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A5(r22r0)/(r21r0), is equal to20.5 and therefore a
rarefaction is reflected. For all these cases the velocity
perturbations of the contact surface oscillate with the same
period and phase as the velocity perturbation behind the
shock. However, their time averaged values,^ȧc(t)&/vs , are
different for the three cases. We definêȧc(t)&
5* t0

t ȧc(t8)dt8/(t2t0), wheret0 is the time when the shock

hits the contact surface. They are indicated by the solid lines
in Fig. 3. The averaged perturbation velocity of the contact
surface,̂ ȧc(t)&, is negative for the phase 1,^ȧc(t)&'0 for
the phase 2, and̂ȧc(t)& is positive for the phase 3. The
perturbation velocity of the contact surface is in phase with
the shock ripple perturbation velocity at the moment the
shock crosses the contact surface. The growth rates of the
instability driven by the nonuniform shock thus depend on
the phase of the oscillating shock at the time when the shock
hits the contact surface. The dependence of the growth rates
on the shock phase is found to be similar even for different
Atwood numbers as will be shown later.

The physical mechanism of the instability and the strong
dependence of the growth rate on the phase of the oscillating
shock can be understood as follows. When the rippled shock
hits the uniform contact surface, the shock induces the ve-
locity perturbation of the contact surface, impulsively. The
velocity perturbation of the contact surface can be estimated
by considering that an oblique shock hits the contact surface.
As shown in Fig. 4, in a time ofDt, the incident shock
moves a distance of@vs2u01ȧx(t)e

ikx#Dt in the z direc-
tion, in the laboratory frame, while the intersection of the
incident shock and the contact surface moves a distance of
@vs2u01ȧs(t)e

ikx#Dt/tanas along the contact surface.
Therefore, the contact surface moves a distance@vs2u0
1ȧs(t)e

ikx#Dt sinac /tanas normal to itself. Since the con-
tact surface velocity isuc2u01ȧc(t)e

ikx in the laboratory
frame, we have

uc2u01ȧc~ t !e
ikx5@vs2u01ȧs~ t !e

ikx#
sinac

tanas
. ~4!

For small angles, sina'tana'a, and we obtainac:as5uc
2u0:vs2u0 from the zeroth-order terms of Eq.~4!. We then

obtain the velocity perturbation of the contact surface in-
duced by the impact of the rippled shock front from the
first-order terms, in the form

ȧc~ t0!5
uc2u0
vs2u0

ȧs~ t0!. ~5!

The pressure perturbation behind the rippled shock is a
damped oscillation. For simplicity we assume that the con-
tact surface is accelerated continuously, in the form,g(t)
5Dg exp$2G(t2t0)&sin$v(t2t0)1f%, wheref is the phase
of the oscillating shock at the timet0, andDg is a constant
value.v and G are the oscillating frequency and damping
rate of the acceleration, and they are assumed to be con-
stants. The growth rate of the instability is estimated by in-
tegrating the acceleration,ȧc(t)5ȧc(t0)2* t0

t g(t)dt.

Now we maket→` and assumev@G, thus getting

^^ȧc&&5ȧc~ t0!2
Dg

v
cosf, ~6!

where ^^ && expressed an asymptotic value,!ȧc@
5 limt→`^ȧc(t)&5 limt→`ȧc(t).

Equation~6! clearly indicates that the growth rate depends
on the phase of the oscillating shock at the time when the
shock hits the contact surface. It can also be shown that the
growth rate depends on the phase in the case that the accel-
eration decays proportionally tot2n (n,0).

We show the explicit dependence of^^ȧc&& on the phase
of ȧs at t5t0. The longitudinal gravity perturbation is
g(t);@]p1/]z#z5zc

, where zc is the position of the con-

tact surface. From Eq.~2! we see thatṗ1
1(vst,t) has the

same phase asäs(t). Then from Eq.~3! we deduce that
g(t0) has the same phase asas(t0). Namely, we obtain
ac(t0)}as(t0)}cosf. Thus the first and the second terms in
Eq. ~6! have the same phase. If in Eq.~6! we assume that the
second term is proportional to the first one, then it results
that

^^ȧc&&5D
uc2u0
vs2u0

ȧs~ t0!, ~7!

whereD is a constant value. The validity of Eq.~7! will be
shown later for various Atwood numbers. Equation~7! indi-
cates clearly that the growth rate depends on the phase of the
oscillating shock at the time when the shock hits the contact
surface. The instability can thus be understood as a gravita-
tional instability where the acceleration is induced by the
velocity perturbation of the shock front and by the oscillatory
damped pressure perturbation behind it.

The dependence of the growth rate on the Atwood num-
ber is investigated for three different phases of the shock.
The results are shown in Fig. 5, where open circles, squares,
and triangles correspond to the phases 1, 2, and 3 in Fig. 2,
respectively. The solid, dotted, and dot-dashed lines express
the theoretical values obtained from Eq.~7! for the phases 1,
2, and 3, respectively, whereȧs(t0) is estimated by substi-
tuting the pressure perturbation observed in the simulations,
p1
1(vst0 ,t0), into Eq.~2! for each phase of Fig. 2, and assum-

ing D50.66. The growth rates observed in the simulations
agree very well with the theoretical values estimated from
Eq. ~7!.

Nonlinear evolution of the instability is also investigated
for the large amplitude of the rippled piston,a0 /l50.2 by

FIG. 4. Schematic drawing of an oblique shock perturbation
through a contact surface for a negative Atwood number,A,0. IS,
TS, RR, andC are the same as in Fig. 1. IS8 andC8 are the incident
shock and contact surface after a timeDt.
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using IMPACT-2D. The contrast in Fig. 6 indicates the iso-
density contour for the Atwood numberA520.5. The
phases of the oscillating shock in Figs. 6~a! and 6~b! corre-
spond to the phases 2 and 3 in Fig. 2, respectively. The black
area in the top of each frame in the figures represents the
rippled piston, whose surface shape is given by a sinusoid
function. The first frame shows the rippled shock driven by
the piston and the uniform contact surface. The second frame
shows the state at the time when the shock hits the contact
surface,vst/l50.7 in Fig. 6~a! and atvst/l50.9 in Fig.
6~b!. The third and fourth frames show the transmitted shock
and the unstable contact surface.

There is no asymptotic growth of the contact surface in
the linear regime of phase 2. However, the mushroom shape
of the contact surface appears as shown in Fig. 6~a!. In the
case of phase 3, the square shape of the contact surface ap-
pears as shown in Fig. 6~b!. These differences between the
linear and nonlinear cases are caused by the large distortion
of the shock surface which is not sinusoidal any more as one
can see in the first frame in Figs. 6~a! and 6~b!. At phase 2
the cusplike structures appear in the shape of the shock sur-
face at the center and both sides. The velocity impulse from
the cusplike structured shock passage drives the mushroom
shapes of the contact surface. Even at phase 3, the shock
surface is not flat any more for the large amplitude of the
rippled shock. The shock surface with little square shapes of
the contact surface in Fig. 6~b!. The density perturbations
between the piston and contact surface in the last frames are
rather complex because of the reflected rarefaction at the
piston surface.

We have found an instability of the uniform contact sur-
face when the nonuniform shock driven by a rippled piston
passes through the contact surface. Both the linear and non-
linear evolutions of the instability exhibit differences from
the standard RM instability. The physical mechanism of the
instability can be explained as a gravitational instability
driven by the acceleration induced by the initial nonuniform
shock and the pressure perturbation behind it. The growth
rate depends on the phase of the oscillating shock at the time
when the shock hits the contact surface.
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FIG. 5. Normalized asymptotic values of the growth rate,
^^ȧc&&/vs , vs Atwood number. Open circles, squares, and triangles
are simulation results for the cases corresponding to phases 1, 2,
and 3 in Fig. 2. The solid, dotted, and dot-dashed lines are the
corresponding theoretical values.

FIG. 6. Nonlinear evolutions of the instability are shown by the
isodensity contours with contrast.~a! and~b! correspond to phases 2
and 3 in Fig. 2. The black area in the top of each frame in the
figures represents the rippled piston. In~a! each frame corresponds
to the time atvst/l50.2, 0.7, 1.2, and 1.7, and in~b! vst/l50.4,
0.9, 1.4, and 1.9.P, C, IS, and TS are the same as in Fig. 1.
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